
Digital Logic Design

Instructors:

Prof . Hala Zayed

Ass. Prof Mazen M. Selim

Dr Mona A. S. Ali

Text Book

 Course Notes (obtained online from the e-
learning portal of the national e-learning
center)

 Essential Books

 Logic and Computer Design Fundamentals, 2nd
Edition, by M. M. Mano and C. R. Kime,
published by Prentice Hall, 2003.

 Recommended Books

 Digital Fundamentals ,eighth Edition by
Thomas L. Floyd, published by Prentice Hall,
2005.

Course Outline & Schedual
W

Topics Textbook Sections

1 Number systems Ch 1 sec1-5 (Dr Mona)

2 Digital codes Ch 1 reminder (Dr Mona)

3 Logic Gates Ch 2 all (Dr Mona)

4 Boolen Algebra Ch 3 (Dr Mona)

5 Switching functions and canonical forms & Quiz 1 Ch 3 (Dr Mona)

6 Simplification using Karnaugh maps Ch 4 (Dr Mona)

7 Digital combinational logic (decoders, encoders, multiplexers,

demultiplexers)

Ch5 (Ass. Prof Mazen)

8 Digital combinational logic (adders and subtractors) Ch5 (Ass. Prof Mazen)

9 Digital combinational logic (comparators, multipliers, dividers) Ch 5(Ass. Prof Mazen)

10 Sequential logic and flip flop (part I) Quiz 2 Ch 6 (Prof Hala)

11 Sequential logic and flip flop (part 2) Ch6 (Prof Hala)

12 Analysis of sequential circuits Ch7 (Prof Hala)

13 Design of sequential circuits Ch8 (Prof Hala)

14 Counter circuits Ch9 (Prof Hala)

CHAPTER 1

NUMBER SYSTEMS AND
CODES

Contents

 BINARY NUMBERS

 OCTAL NUMBERS

 HEXADECIMAL NUMBERS

 1’s and 2’s COMPLEMENTS

 REPRESENTATION OF SIGNED NUMBERS

 ARITHMETIC OPERATIONS WITH SIGNED
NUMBERS

 BINARY CODED DECIMAL (BCD)

 THE ASCII CODE

 The Excess-3 Code

 ERROR-DETECTION CODE

Common Number System

Conversion among Bases

Quick example

Decimal to Decimal (just for fun)

BINARY NUMBERS

 In the decimal numbering system, each
position can represent 10 different digits
from 0 to 9. each position has a weighting
factor of powers of 10.

 5621 = 1x100 + 2x101 + 6x102 + 5x103

 In binary numbers, we can only use the
digits 0 and 1 and the weights are powers
of 2.

2
10

 2
9
 2

8
 2

7
 2

6
 2

5
 2

4
 2

3
 2

2
 2

1
 2

0

1024 512 256 128 64 32 16 8 4 2 1

Decimal to Binary

Binary to Decimal Conversion

 To convert a binary number into decimal,
we multiply each bit (binary digit) by the
weight of its position and sum up the
results.

 (11011011)2 = 1x 20+ 1x 21+ 1x 23+ 1x 24+ 1x 26+ 1x27

 = 1 + 2 + 8 +16 + 64 + 128 = 219

Decimal to Binary Conversion

 There are two ways to make this
conversion:

 the repeated division-by-2-method (which you
have studied before)

 the sum of weights method

Decimal to Binary

Sum of weights method

 To find a binary number that is equivalent
to a decimal number, we can determine
the set of binary weights whose sum is
equal to the decimal number.

Sum of weights method (contd.)

 Example:

 Convert the following decimal numbers to
binary form: 13, 100, 65, and 189. Put
your answer as eight bit numbers.

 Answer:

 128 64 32 16 8 4 2 1

13 = 0 0 0 0 1 1 0 1

100 = 0 1 1 0 0 1 0 0

65 = 0 1 0 0 0 0 0 1

189 = 1 0 1 1 1 1 0 1

Binary To Decimal

Decimal to Binary

Range of binary numbers

 Total combinations = 2n different
numbers in the range 0 to (2n – 1)

 For example a 4-bit number can hold up
to 24=16 different values in the range 0 to
15 (0 to 1111).

 An 8-bit number can hold up to 28=256
different values in the range 0 to 255 (0
to 11111111).

Example

 What is the range of values (in decimal) that
can be represented by a binary number of
the following number of bits: 10, 20 and
24.

 Solution
 N=10 range = 0 to 210 – 1 = 0 to 1023

 i.e. 1024 (1K)numbers

 N=20 range =0 to 220 – 1 =0 to 1048575
 i.e. 1048576 (1M)numbers

 N=24 range =0 to 224 – 1 =0 to 16777215
 i.e. 16777216 (16M)numbers

OCTAL NUMBERS

 The eight allowable digits are 0,1,2,3,4,5,6 and 7 and the
weights are powers of 8.

 Decimal Binary Octal
 0 0 0 0 0
 1 0 0 1 1
 2 0 1 0 2
 3 0 1 1 3
 4 1 0 0 4
 5 1 0 1 5
 6 1 1 0 6
 7 1 1 1 7
 8 1 0 0 0 10
 9 1 0 0 1 1 1
 10 1 0 1 0 1 2
 11 1 0 1 1 1 3

Octal Conversions: binary to octal

 group the binary positions in groups of
three

 Convert the following binary numbers into
octal: a) 10110111 b) 01101100

 Solution

 10110111 = 010 110 111 = 267

 01101100 = 001 101 100 = 154

Octal Conversions: octal to binary

 replace each octal number with three equivalent
binary numbers even if the number can be
represented by less than three bits

 Convert the following octal number into
binary: a) 327 b)601

 Solution

 a) 327 = 011 010 111 = 11010111

 b) 601 = 110 000 001 = 110000001

Octal Conversions: octal to decimal

 To convert from octal to decimal, (multiply

by weighting factors).

 Convert (713)8 to decimal.

 Solution

 713 = 7 x 82 + 1 x 81 + 3 x 80 = 459

Octal Conversions: decimal to octal

 To convert from decimal to octal, the
successive-division procedure or the sum
of weights procedure can be used

Octal Conversions (contd.)

 Convert the following

decimal numbers to

octal: a) (596)10

 b) (100)10

 Solution

 8
3
 8

2
 8

1
 8

0

 512 64 8 1

596 = 1 1 2 4

1000 = 1 7 5 0

a) 596 ÷ 8 = 74 remainder 4

 74 ÷ 8 = 9 remainder 2 1124

 9 ÷ 8 = 1 remainder 1

 1 ÷ 8 = 0 remainder 1

b) 1000 ÷ 8 = 125 remainder 0

 125 ÷ 8 = 15 remainder 5 1750

 15 ÷ 8 = 1 remainder 7

 1 ÷ 8 = 0 remainder 1

HEXADECIMAL NUMBERS

 The 16 allowable
digits are
0,1,2,3,4,5,6,7,8,9,A,
B,C,D,E and F

 the weights are
powers of 16.

Decimal Binary Hexadecimal

0 0000 0000 0 0

1 0000 0001 0 1

2 0000 0010 0 2

3 0000 0011 0 3

4 0000 0100 0 4

5 0000 0101 0 5

6 0000 0110 0 6

7 0000 0111 0 7

8 0000 1000 0 8

9 0000 1001 0 9

10 0000 1010 0 A

11 0000 1011 0 B

12 0000 1100 0 C

13 0000 1101 0 D

14 0000 1110 0 E

15 0000 1111 0 F

16 0001 0000 1 0

17 0001 0001 1 1

18 0001 0010 1 2

19 0001 0011 1 3

20 0001 0100 1 4

Hexadecimal Conversion: binary to

hexadecimal

 grouping the binary positions in groups of
four

 Convert the following binary numbers into
hexadecimal: a) 10101111 b) 01101100

 Solution:

 10110111 = 1011 0111 = (B 7)16

 01101100 = 0110 1100 = (6 C)16

Hexadecimal Conversion: hex to

binary

 replace each hexadecimal number with four
equivalent binary numbers even if the number
can be represented by less than four bits

 Convert the following hexadecimal number into
binary: a) A2E b)60F

 Solution:

 a) (A2E)16 = 1010 0010 1110

 = (101000101110)2

 b) (60F)16 = 0110 0000 1111

 = (011000001111)2

Hexadecimal Conversion: hex to

decimal

 To convert from hexadecimal to decimal,
(multiply by weighting factors).

 Convert (7AD)16 to decimal.

 Solution:

 (7AD)16 = 7 x 162 + 10 x 161 + 13 x 160

 = (1965)10

Hexadecimal Conversion: decimal to

hex

 To convert from decimal to hexadecimal, the successive-
division procedure or the sum of weights procedure can be
used.

 Convert the following decimal numbers to hexadecimal: a)

(596)10 b) (100)10

 Solution:
 596 ÷ 16 = 37 remainder 4

 37 ÷ 16 = 2 remainder 5 254

 2 ÷ 16 = 0 remainder 2

 1000 ÷ 16 = 62 remainder 8

 62 ÷ 16 = 3 remainder 14 3E8

 3 ÷ 16 = 0 remainder 3

Exercise

Exercise

Binary Addition

Binary Addition

Binary Arithmetic

 Binary Addition

 11101101 + 01000011 = 100110000 This
example shows that the result could not fit in 8-
bits (237 + 67 = 304) and the maximum
capacity of 8-bits is 255. That is what we call
overflow.

1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1

0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1

1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0

Binary Subtraction

 The four cases for subtracting binary digits (A -
B) are as follows

 D is the difference and B is the borrow

A B D B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Example

 Subtract the following binary numbers and put
the result in 8-bits. Verify your answer by
converting into decimal:

 a) 10111111 - 01111100

 10111111 - 01111100 = 01000011 (191 - 124 = 67)

 b) 11101101 – 01000011

 11101101 - 01000011 = 10101010 (237 – 67 = 170)

0 10 0 10

1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1

0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0

Multiplication

Multiplication

Multiplication

Binary Multiplication
 a) 11100 x 101 = 10001100

 (16+8+4) x (4+1) = (128+8+4)

 28 x 5 = 140

 b) 11011 x 1101 = 101011111

 (16+8+2+1) x (8+4+1) = (256+64+16+8+4+2+1)

 27 x 13 = 351 1 1 1 0 0 1 1 0 1 1

 1 0 1 1 1 0 1

 1 1 1 0 0 1 1 0 1 1

 0 0 0 0 0 0 0 0 0 0

 1 1 1 0 0 1 1 0 1 1

 1 0 0 0 1 1 0 0 1 1 0 1 1

 1 0 1 0 1 1 1 1 1

Binary Division

 11001 ÷ 101 = 101

 (16+8+1) ÷ (4+1) =

(4+1)

 25 ÷ 5 = 5

 1 0 1

1 0 1 1 1 0 0 1

 1 0 1

 1 0 1

 1 0 1

 0 0 0

1’s and 2’s COMPLEMENTS

 1’s and 2’s complement allow the representation
of negative numbers in binary.

 The 1's complement of a binary number is
found by simply changing all 1s to 0s and all
0s to 1s.

 Examples

 The 1’s complement of 10001111 = 01110000 .

 The 1’s complement of 01101100 = 10010011 .

 The 1’s complement of 00110011 = 11001100 .

2's complement

 The 2's complement of a binary number is
found by adding 1 to the LSB of the 1 's
complement.

 Another way of obtaining the 2’s
complement of a binary number is to start
with the LSB (the rightmost bit) and leave
the bits unchanged until you find the first
1. Leave the first 1 unchanged and
complement the rest of the bits (change 0
to 1 and 1 to 0).

2's complement

 Example

 The 2’s complement of 10001111
 = 01110000 +1 = 01110001

 The 2’s complement of 01101100
 = 10010011 + 1 =10010100

 The 2’s complement of 00110011
 = 11001100 + 1 = 11001101

REPRESENTATION OF SIGNED

NUMBERS

 There are three basic ways to represent
signed numbers:

 sign-magnitude

 1’s complement

 2’s complement.

Sign-Magnitude

 The number consists of two parts:

 the MSB (most significant bit) represents the
sign

 the other bits represent the magnitude of the
number.

 If the sign bit is 1 the number is negative
and if it is 0 the number is positive.

Examples: decimal to sign-magnitude

 -30 = 1 0011110 (The leftmost 1 indicates

 that the number is negative. The remaining
 7-bits carry the magnitude of 30)

 30 = 0 0011110 (The only difference between

 –30 and +30 is the sign bit because the
 magnitude bits are similar in both numbers.)

 -121 = 1 1111001

 99 = 0 1100011

Examples: sign-magnitude to decimal

 10111001 = -57 (The leftmost 1 indicates

 that the number is negative. The remaining
 7-bits carry the magnitude of 57)

 11111111 = -127 (The minimum number

 that can be represented in an 8-bit register
 using sign-magnitude representation)

 01111111 = +127 (The maximum number

 that can be represented in an 8-bit register
 using sign-magnitude representation)

Range of numbers in Sign-

Magnitude Representation

 for an n-bit number, the range of values
that could be represented using sign-
magnitude notation is from

 –(2n-1-1) to +(2n-1-1).

 For example if n=8 the range is from –127
to 127

Representation of negative numbers

in 1’s Complement

 Negative numbers are represented in 1’s
complement format

 positive numbers are represented as the
positive sign-magnitude numbers

Examples: decimal to 1’s complement

 30 = 00011110

 -30 = 11100001
 the number equals the 1’s complement of 30

 121 = 01111001

 -121 = 10000110

 99 = 01100011

Examples: 1’s complement to decimal

 10111001 = -01000110 = -70

 The leftmost 1 indicates that the number is
negative. Take the 1’s complement of the
number to get the magnitude of 70

 11111111 = -00000000 = -0

 there are two representations of zero

 01111111 = +127

 The maximum +ve number

 10000000 = -01111111 = -127

 The maximum –ve number

Range of numbers in 1’s complement

Representation

 –(2n-1-1) to +(2n-1-1).

 exactly the same as the range of numbers in
sign-magnitude

Representation of negative numbers in

2’s Complement

 Negative numbers are represented in 2’s
complement format

 Positive numbers are represented exactly
the same way as in sign-magnitude and in
1’s complement

Examples: decimal to 2’s complement

 30 = 00011110

 -30 = 11100010

 the number equals the 2’s complement of 30

 121 = 01111001

 -121 = 10000111

 99 = 01100011

Examples: 2’s complement to decimal

 10111001 = -01000111 = -71

 The leftmost 1 indicates that the number is
negative.

 Take the 2’s complement of the number to get
the magnitude of 71

 11111111 = -00000001 = -1

 No two representations of zero

 01111111 = +127

 The maximum +ve number

 10000000 = -10000000 = -128

 The minimum –ve number

Range of numbers in 2’s complement

Representation

 –(2n-1) to +(2n-1-1)

 if n=8 the range is from –128 to 127

2's Complement Evaluation

 Positive and negative numbers in the 2's
complement system are evaluated by
summing the weights in all bit positions
where there are 1s and ignoring those
positions where there are zeros.

 The weight of the sign bit in a negative
number is given a negative value

EXAMPLE

 01010110 = 64 + 16 + 4 + 2 = +86

 10101010 = -128 + 32 + 8 + 2 = -86

-27 26 25 24 23 22 21 2°

0 1 0 1 0 1 1 0

-27 26 25 24 23 22 21 2°

1 0 1 0 1 0 1 0

ARITHMETIC OPERATIONS WITH

SIGNED NUMBERS (ADDITION)

 Both numbers positive:
 00000111 7

 + 00000100 + 4

 00001011 11

 Positive number with magnitude
larger than negative number:

 00001111 15

 + 11111010 + -6

 Discard carry 1 00001001 9

ARITHMETIC OPERATIONS WITH

SIGNED NUMBERS (ADDITION)

 Negative number with magnitude
larger than positive number:

 00010000 16

 + 11101000 + -24

 11111000 -8

 Both numbers negative:
 11111011 —5

 + 11110111 + -9

 Discard carry—> 1 11110010 -14

Overflow Condition

 When two numbers are added and the
number of bits required to represent the
sum exceeds the number of bits in the two
numbers, an overflow results

 incorrect sign bit

 only when both numbers are positive or
both numbers are negative

Example

 01111101 125

+ 00111010 + 58

 10110111 183

 Incorrect sign

 Incorrect magnitude

 What if we have an extra bit?

ARITHMETIC OPERATIONS WITH

SIGNED NUMBERS (Subtraction)

 the subtraction operation changes the sign
of the subtrahend and adds it to the
minuend.

 Example: 10001000 – 11100010

 Try in your notebook.

solution

 10001000 – 11100010

 -120 - (-30) = -120 + 30 = -90

 10001000 Minuend (-120)

+ 00011110 2's complement of subtrahend (+30)

 10100110 Difference (-90)

