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CHAPTER 1 

 

NUMBER SYSTEMS AND 
CODES 
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Common Number System 

 



Conversion among Bases 



Quick example  



Decimal to Decimal (just for fun) 



BINARY NUMBERS 

 In the decimal numbering system, each 
position can represent 10 different digits 
from 0 to 9. each position has a weighting 
factor of powers of 10.  

 5621 = 1x100 + 2x101 + 6x102 + 5x103 

 In binary numbers, we can only use the 
digits 0 and 1 and the weights are powers 
of 2.  
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Decimal to Binary  



Binary to Decimal Conversion  

 To convert a binary number into decimal, 
we multiply each bit (binary digit) by the 
weight of its position and sum up the 
results.  

 (11011011)2 = 1x 20+ 1x 21+ 1x 23+ 1x 24+ 1x 26+ 1x27 

                                = 1 + 2 + 8 +16 + 64 + 128 = 219 



Decimal to Binary Conversion 

  There are two ways to make this 
conversion: 

  the repeated division-by-2-method (which you 
have studied before)  

 the sum of weights method  



Decimal to Binary 



Sum of weights method  

 To find a binary number that is equivalent 
to a decimal number, we can determine 
the set of binary weights whose sum is 
equal to the decimal number.  

 



Sum of weights method (contd.) 

 Example: 

 Convert the following decimal numbers to 
binary form: 13, 100, 65, and 189. Put 
your answer as eight bit numbers. 

 Answer:  

  128 64 32 16 8 4 2 1 

13   =  0 0 0 0 1 1 0 1 

100 =  0 1 1 0 0 1 0 0 

65   =  0 1 0 0 0 0 0 1 

189 =  1 0 1 1 1 1 0 1 

 



Binary To Decimal 



Decimal to Binary 



Range of binary numbers 

 Total combinations = 2n  different 
numbers in the range  0 to (2n – 1)  

 For  example a 4-bit number can hold up 
to 24=16 different values in the range 0 to 
15 (0 to 1111).  

 An 8-bit number can hold up to 28=256 
different values in the range 0 to 255 (0 
to 11111111).  



Example  

 What is the range of values (in decimal) that 
can be represented by a binary number of 
the following number of bits:  10, 20  and 
24.  

 Solution  
 N=10  range =  0  to 210 – 1 = 0 to 1023  

   i.e.  1024 (1K)numbers  

 N=20  range =0  to 220 – 1 =0 to 1048575 
   i.e.  1048576 (1M)numbers 

 N=24  range =0  to 224 – 1 =0 to 16777215 
   i.e.  16777216 (16M)numbers 



OCTAL NUMBERS  

 The eight allowable digits are 0,1,2,3,4,5,6 and 7 and the 
weights are powers of 8.  

 Decimal  Binary  Octal 
 0   0 0 0  0 
 1   0 0 1  1 
 2   0 1 0  2 
 3   0 1 1   3 
 4   1 0 0  4 
 5   1 0 1  5 
 6   1 1 0  6 
 7   1 1 1  7 
 8                     1 0 0 0  10 
 9          1 0 0 1  1 1 
 10          1 0 1 0  1 2 
 11          1 0 1 1  1 3 



Octal Conversions: binary to octal  

 group the binary positions in groups of 
three  

 Convert the following binary numbers into 
octal: a) 10110111   b) 01101100  

 Solution  

 10110111 = 010 110 111 =  267  

 01101100 = 001 101 100 = 154  



Octal Conversions: octal to binary 

 replace each octal number with three equivalent 
binary numbers even if the number can be 
represented by less than three bits  

 Convert the following octal number into 
binary:  a) 327   b)601  

 Solution  

 a) 327 = 011 010 111 = 11010111  

 b) 601 = 110 000 001 = 110000001 



Octal Conversions: octal to decimal 

 To convert from octal to decimal, (multiply 

by weighting factors).  

 Convert (713)8 to decimal. 

 Solution  

 713 = 7 x 82 + 1 x 81 + 3 x 80 = 459  



Octal Conversions: decimal to octal 

 To convert from decimal to octal, the 
successive-division procedure or the sum 
of weights procedure can be used  



Octal Conversions (contd.) 

 Convert the following 

decimal numbers to 

octal:  a) (596)10           

  b)  (100)10  

 Solution  
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 512 64 8 1 

596   =  1 1 2 4 

1000 =  1 7 5 0 

 

a) 596 ÷ 8 = 74 remainder 4 

 74 ÷ 8 = 9 remainder 2          1124 

 9 ÷ 8 = 1 remainder 1 

 1 ÷ 8 = 0 remainder 1 

b) 1000 ÷ 8 = 125 remainder 0 

 125 ÷ 8 = 15 remainder 5       1750 

 15 ÷ 8 = 1 remainder 7 

 1 ÷ 8 = 0 remainder 1 



HEXADECIMAL NUMBERS  

 The 16 allowable 
digits are 
0,1,2,3,4,5,6,7,8,9,A,
B,C,D,E and F  

 the weights are 
powers of 16.  

 

Decimal Binary Hexadecimal 

0 0000 0000 0 0 

1 0000 0001 0 1 

2 0000 0010 0 2 

3 0000 0011 0 3 

4 0000 0100 0 4 

5 0000 0101 0 5 

6 0000 0110 0 6 

7 0000 0111 0 7 

8 0000 1000 0 8 

9 0000 1001 0 9 

10 0000 1010 0 A 

11 0000 1011 0 B 

12 0000 1100 0 C 

13 0000 1101 0 D 

14 0000 1110 0 E 

15 0000 1111 0 F 

16 0001 0000 1 0 

17 0001 0001 1 1 

18 0001 0010 1 2 

19 0001 0011 1 3 

20 0001 0100 1 4 

 



Hexadecimal Conversion: binary to 

hexadecimal  

 grouping the binary positions in groups of 
four 

 Convert the following binary numbers into 
hexadecimal: a) 10101111   b) 01101100 

 Solution: 

 10110111 = 1011 0111 =  (B 7)16 

 01101100 = 0110 1100 = (6 C)16 



Hexadecimal Conversion: hex to 

binary  

 replace each hexadecimal number with four 
equivalent binary numbers even if the number 
can be represented by less than four bits  

 Convert the following hexadecimal number into 
binary:  a) A2E   b)60F 

 Solution: 

 a) (A2E)16  = 1010 0010 1110  

    = (101000101110)2  

 b) (60F)16  = 0110 0000 1111    

  = (011000001111)2  



Hexadecimal Conversion: hex to 

decimal 

 To convert from hexadecimal to decimal, 
(multiply by weighting factors).  

 Convert (7AD)16 to decimal. 

 Solution: 

 (7AD)16  = 7 x 162 + 10 x 161 + 13 x 160 

   = (1965)10 



Hexadecimal Conversion: decimal to 

hex 

 To convert from decimal to hexadecimal, the successive-
division procedure or the sum of weights procedure can be 
used. 

 Convert the following decimal numbers to hexadecimal: a) 

(596)10  b)  (100)10 

 Solution: 
   596 ÷ 16   = 37 remainder     4 

  37   ÷ 16   = 2  remainder      5      254 

  2     ÷ 16   = 0  remainder      2 

 

  1000 ÷  16  = 62  remainder 8 

  62   ÷  16  = 3    remainder 14       3E8 

  3     ÷  16  = 0    remainder 3 



Exercise 



Exercise  



Binary Addition 



Binary Addition 



Binary Arithmetic  

 Binary Addition  

 

 

 

 

 11101101 + 01000011 = 100110000   This 
example shows that the result could not fit in 8-
bits ( 237 + 67 = 304) and the maximum 
capacity of 8-bits is 255. That is what we call 
overflow.  

 

 

1 1 1 1 1        1   1 1 1 1  

0 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 

0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 

1 0 1 1 1 0 1 1    1 0 0 1 1 0 0 0 0 

 



Binary Subtraction 

 The four cases for subtracting binary digits (A - 
B) are as follows  

 

 

 

 

 

 

 D is the difference and B is the borrow  

A B D B 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 



Example 

 Subtract the following binary numbers and put 
the result in 8-bits. Verify your answer by 
converting into decimal:  

 a) 10111111 - 01111100  

 10111111 - 01111100 = 01000011    (191 - 124 = 67)  

 b) 11101101 – 01000011 

 11101101 - 01000011 = 10101010    (237 – 67 = 170)  

0 10                0 10  

1 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 

0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 

0 1 0 0 0 0 1 1     1 0 1 0 1 0 1 0 

 



Multiplication 



Multiplication 



Multiplication 



Binary Multiplication   
 a) 11100 x 101  = 10001100 

 (16+8+4) x (4+1) = (128+8+4)       

 28 x  5 = 140 

 b) 11011 x 1101  = 101011111 

 (16+8+2+1) x (8+4+1) = (256+64+16+8+4+2+1) 

 27 x  13 = 351      1 1 1 0 0      1 1 0 1 1  

      1 0 1       1 1 0 1  

    1 1 1 0 0      1 1 0 1 1  

   0 0 0 0 0      0 0 0 0 0   

  1 1 1 0 0      1 1 0 1 1    

 1 0 0 0 1 1 0 0   1 1 0 1 1     

          1 0 1 0 1 1 1 1 1  

 



Binary Division  

 11001 ÷ 101  = 101 

 (16+8+1) ÷ (4+1) = 

(4+1) 

 25 ÷  5 = 5  

 

     1 0 1   

1 0 1 1 1 0 0 1   

   1 0 1     

     1 0 1   

     1 0 1   

     0 0 0   

 



1’s and 2’s COMPLEMENTS 

 1’s and 2’s complement allow the representation 
of negative numbers in binary.  

 The 1's complement of a binary number is 
found by simply changing all 1s to 0s and all 
0s to 1s.  

 Examples  

 The 1’s complement of 10001111 = 01110000 . 

 The 1’s complement of 01101100 = 10010011 . 

 The 1’s complement of 00110011 = 11001100 . 



2's complement 

 The 2's complement of a binary number is 
found by adding 1 to the LSB of the 1 's 
complement. 

 Another way of obtaining the 2’s 
complement of a binary number is to start 
with the LSB (the rightmost bit) and leave 
the bits unchanged until you find the first 
1. Leave the first 1 unchanged and 
complement the rest of the bits (change 0 
to 1 and 1 to 0).  



2's complement  

 Example  

 The 2’s complement of 10001111   
   = 01110000 +1 = 01110001 

 The 2’s complement of 01101100   
   = 10010011 + 1 =10010100 

 The 2’s complement of 00110011   
   = 11001100 + 1 = 11001101 



REPRESENTATION OF SIGNED 

NUMBERS  

 There are three basic ways to represent 
signed numbers: 

  sign-magnitude 

 1’s complement  

 2’s complement.  

 



Sign-Magnitude  

 The number consists of two parts:  

 the MSB (most significant bit) represents the 
sign  

 the other bits represent the magnitude of the 
number.  

 If the sign bit is 1 the number is negative 
and if it is 0 the number is positive.  



Examples: decimal to sign-magnitude 

 -30 = 1 0011110  (The leftmost 1 indicates 

 that the number is negative. The remaining 
 7-bits carry the magnitude of 30) 

 30 = 0 0011110  (The only difference between 

 –30 and +30 is the sign bit because the 
 magnitude bits are similar in both numbers.) 

 -121 = 1 1111001  

 99 = 0 1100011 



Examples: sign-magnitude to decimal 

 10111001 = -57  (The leftmost 1 indicates 

 that the number is negative. The remaining 
 7-bits carry the magnitude of 57) 

 11111111 = -127  (The minimum number 

 that can be represented in an 8-bit register 
 using sign-magnitude representation) 

 01111111 = +127 (The maximum number 

 that can be represented in an 8-bit register 
 using sign-magnitude representation) 



Range of numbers in Sign-

Magnitude Representation  

 for an n-bit number, the range of values 
that could be represented using sign-
magnitude notation is from  

 –(2n-1-1) to +(2n-1-1).  

 For example if n=8 the range is from –127 
to 127  



Representation of negative numbers 

in 1’s Complement 

 Negative numbers are represented in 1’s 
complement format  

 positive numbers are represented as the 
positive sign-magnitude numbers 

 



Examples: decimal to 1’s complement 

 30 = 00011110 

 -30 = 11100001   
 the number equals the 1’s complement of 30 

 121 = 01111001   

 -121 = 10000110 

 99 = 01100011 

 



Examples: 1’s complement to decimal 

 10111001 = -01000110 = -70   

 The leftmost 1 indicates that the number is 
negative. Take the 1’s complement of the 
number to get the magnitude of 70 

 11111111 = -00000000 = -0  

 there are two representations of zero  

 01111111 = +127  

 The maximum +ve number  

 10000000 = -01111111 = -127 

 The maximum –ve number   

 

 



Range of numbers in 1’s complement 

Representation 

 –(2n-1-1) to +(2n-1-1).  

 exactly the same as the range of numbers in 
sign-magnitude 



Representation of negative numbers in 

2’s Complement 

 Negative numbers are represented in 2’s 
complement format  

 Positive numbers are represented exactly 
the same way as in sign-magnitude and in 
1’s complement 



Examples: decimal to 2’s complement 

 

 30 = 00011110 

 -30 = 11100010   

 the number equals the 2’s complement of 30 

 121 = 01111001   

 -121 = 10000111 

 99 = 01100011 



Examples: 2’s complement to decimal 

 10111001 = -01000111 = -71   

 The leftmost 1 indicates that the number is 
negative. 

  Take the 2’s complement of the number to get 
the magnitude of 71 

 11111111 = -00000001 = -1   

 No two representations of zero 

 01111111 = +127  

 The maximum +ve number 

 10000000 = -10000000 = -128  

 The minimum –ve number 



Range of numbers in 2’s complement 

Representation 

 –(2n-1) to +(2n-1-1) 

 if n=8 the range is from –128 to 127 



2's Complement Evaluation 

 Positive and negative numbers in the 2's 
complement system are evaluated by 
summing the weights in all bit positions 
where there are 1s and ignoring those 
positions where there are zeros.  

 The weight of the sign bit in a negative 
number is given a negative value 



EXAMPLE 

 01010110 = 64 + 16 + 4 + 2 = +86 

   

 

 

 

 10101010 =  -128 + 32 + 8 + 2 = -86 

 

-27 26 25 24 23 22 21 2° 

0 1 0 1 0 1 1 0 

 

-27 26 25 24 23 22 21 2° 

1 0 1 0 1 0 1 0 

 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (ADDITION) 

 Both numbers positive:     
    00000111      7 

 + 00000100    + 4 

    00001011     11 

 Positive number with magnitude 
larger than negative number: 

         00001111      15 

       + 11111010    + -6 

 Discard carry    1       00001001        9 

 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (ADDITION) 

 Negative number with magnitude 
larger than positive number: 

      00010000       16 

                + 11101000    + -24 

                    

                    11111000       -8 

 Both numbers negative:                   
       11111011      —5 

                          + 11110111    + -9 

 Discard carry—> 1  11110010     -14 

 



Overflow Condition 

 When two numbers are added and the 
number of bits required to represent the 
sum exceeds the number of bits in the two 
numbers, an overflow results  

 incorrect sign bit 

 only when both numbers are positive or 
both numbers are negative 



Example 

     01111101      125 

+   00111010    + 58 

     10110111      183 

 Incorrect sign 

 Incorrect magnitude 

 What if we have an extra bit? 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (Subtraction) 

 the subtraction operation changes the sign 
of the subtrahend and adds it to the 
minuend. 

 Example: 10001000 – 11100010 

 

 Try in your notebook. 

 



solution 

 10001000 – 11100010 

 -120 - (-30) = -120 + 30 = -90 

 

   10001000      Minuend (-120) 

+ 00011110      2's complement of subtrahend (+30) 

   10100110      Difference (-90) 


