## Digital Logic Design

Instructors:<br>Prof . Hala Zayed<br>Ass. Prof Mazen M. Selim<br>Dr Mona A. S. Ali

## 'Text Book

- Course Notes (obtained online from the elearning portal of the national e-learning center)
- Essential Books
- Logic and Computer Design Fundamentals, 2nd Edition, by M. M. Mano and C. R. Kime, published by Prentice Hall, 2003.
- Recommended Books
- Digital Fundamentals, eighth Edition by Thomas L. Floyd, published by Prentice Hall, 2005.


## Course Outline \& Schedual

| W | Topics | Textbook Sections |
| :--- | :--- | :--- |
| $\mathbf{\#}$ | Number systems | Ch 1 sec1-5 (Dr Mona) |
| 2 | Digital codes | Ch 1 reminder (Dr Mona) |
| 3 | Logic Gates | Ch 2 all (Dr Mona) |
| 4 | Boolen Algebra | Ch 3 (Dr Mona) |
| 5 | Switching functions and canonical forms \& Quiz 1 | Ch 3 (Dr Mona) |
| 6 | Simplification using Karnaugh maps | Ch 4 (Dr Mona) |
| 7 | Digital combinational logic (decoders, encoders, multiplexers, | Ch5 (Ass. Prof Mazen) |
| 8 | Demultiplexers) | Ch5 (Ass. Prof Mazen) |
| 9 | Digital combinational logic (comparators, multipliers, dividers) | Ch 5(Ass. Prof Mazen) |
| 10 | Sequential logic and flip flop (part I) Quiz 2 | Ch 6 (Prof Hala) |
| 11 | Sequential logic and flip flop (part 2) | Ch6 (Prof Hala) |
| 12 | Analysis of sequential circuits | Ch7 (Prof Hala) |
| 13 | Design of sequential circuits | Ch8 (Prof Hala) |
| 14 | Counter circuits | Ch9 (Prof Hala) |

## CHAPTER 1

## NUMBER SYSTEMS AND CODES

## Contents

- BINARY NUMBERS
- OCTAL NUMBERS
- HEXADECIMAL NUMBERS
- 1's and 2's COMPLEMENTS
- REPRESENTATION OF SIGNED NUMBERS
- ARITHMETIC OPERATIONS WITH SIGNED NUMBERS
$\square$ BINARY CODED DECIMAL (BCD)
- THE ASCII CODE
- The Excess-3 Code
- ERROR-DETECTION CODE


## Common Number System

| System | Base | Symbols | Used by <br> humans? | Used in <br> computers? |
| :--- | :---: | :--- | :---: | :---: |
| Decimal | $\mathbf{1 0}$ | $\mathbf{0 , 1 , \ldots \mathbf { 1 } , \ldots}$ | Yes | No |
| Binary | $\mathbf{2}$ | $\mathbf{0 , 1}$ | No | Yes |
| Octal | $\mathbf{8}$ | $\mathbf{0 , 1 , \ldots \mathbf { 7 }}$ | No | No |
| Hexa- <br> decimal | $\mathbf{1 6}$ | $\mathbf{0 , 1 , \ldots} \mathbf{1}$ <br> $\mathbf{A ,}, \mathbf{B}, \ldots$ | No | Yes |

## Conversion among Bases



## Quick example

$$
25_{10}=11001_{2}=31_{8}=19_{16}
$$

## Decimal to Decimal (just for fun)



## BINARY NUMBERS

- In the decimal numbering system, each position can represent 10 different digits from 0 to 9 . each position has a weighting factor of powers of 10.
- $5621=1 \times 10^{0}+2 \times 10^{1}+6 \times 10^{2}+5 \times 10^{3}$
$\square$ In binary numbers, we can only use the digits 0 and 1 and the weights are powers of 2.

| $2^{10}$ | $2^{9}$ | $2^{8}$ | $2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |

## Decimal to Binary

## Decimal



## Octal

Hexadecimal

## Binary to Decimal Conversion

- To convert a binary number into decimal, we multiply each bit (binary digit) by the weight of its position and sum up the results.
$(11011011)_{2}=1 \times 2^{0}+1 \times 2^{1}+1 \times 2^{3}+1 \times 2^{4}+1 \times 2^{6}+1 \times 2^{7}$

$$
=1+2+8+16+64+128=219
$$

## Decimal to Binary Conversion

- There are two ways to make this conversion:
- the repeated division-by-2-method (which you have studied before)
- the sum of weights method


## Decimal to Binary

$125_{10}=1111101_{2}$

## Sum of weights method

$\square$ To find a binary number that is equivalent to a decimal number, we can determine the set of binary weights whose sum is equal to the decimal number.

## Sum of weights method (contd.)

- Example:
- Convert the following decimal numbers to binary form: 13, 100, 65, and 189. Put your answer as eight bit numbers.
- Answer:

|  | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $13=$ | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| $100=$ | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| $65=$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| $189=$ | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| MSB |  |  |  |  |  |  |  | LSS |

## Binary To Decimal

## Technique

- Multiply each bit by $2^{n}$, where $n$ is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results


## Decimal to Binary



## Range of binary numbers

$\square$ Total combinations $=2^{n}$ different numbers in the range 0 to ( $2^{n}-1$ )

- For example a 4-bit number can hold up to $2^{4}=16$ different values in the range 0 to 15 (0 to 1111).
- An 8 -bit number can hold up to $2^{8}=256$ different values in the range 0 to 255 ( 0 to 11111111).


## Example

$\square$ What is the range of values (in decimal) that can be represented by a binary number of the following number of bits: 10, 20 and 24.

- Solution
- $N=10$
- $N=20$
- $N=24$
range $=0$ to $2^{10}-1=0$ to 1023 i.e. 1024 (1K)numbers
range $=0$ to $2^{20}-1=0$ to 1048575 i.e. $1048576(1 \mathrm{M})$ numbers
range $=0$ to $2^{24}-1=0$ to 16777215
i.e. 16777216 (16M)numbers


## OCTAL NUMBERS

- The eight allowable digits are $0,1,2,3,4,5,6$ and 7 and the weights are powers of 8 .
- Decimal
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

ㅁ 11

| Binary | Octal |
| :---: | :---: |
| 000 | 0 |
| 001 | 1 |
| 010 | 2 |
| 011 | 3 |
| 100 | 4 |
| 101 | 5 |
| 110 | 6 |
| 111 | 7 |
| 1000 | 10 |
| 1001 | 11 |
| 1010 | 12 |
| 1011 | 13 |

## Octal Conversions: binary to octal

- group the binary positions in groups of three
$\square$ Convert the following binary numbers into octal: a) 10110111 b) 01101100
- Solution
- $10110111=010110111=267$
- $01101100=001101100=154$


## Octal Conversions: octal to binary

- replace each octal number with three equivalent binary numbers even if the number can be represented by less than three bits
$\square$ Convert the following octal number into binary: a) 327 b)601
- Solution
- a) $327=011010111=11010111$
- b) $601=110000001=110000001$


## Octal Conversions: octal to decimal

- To convert from octal to decimal, (multiply by weighting factors).
$\square$ Convert $(713)_{8}$ to decimal.
$\square$ Solution
- $713=7 \times 8^{2}+1 \times 8^{1}+3 \times 8^{0}=459$


## Octal Conversions: decimal to octal

- To convert from decimal to octal, the successive-division procedure or the sum of weights procedure can be used


## Octal Conversions (contd.)

$\square$ Convert the following decimal numbers to octal:
a) $(596)_{10}$
b) $(100)_{10}$

|  | $8^{3}$ | $8^{2}$ | $8^{1}$ | $8^{0}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 512 | 64 | 8 | 1 |
| $596=$ | 1 | 1 | 2 | 4 |
| $1000=$ | 1 | 7 | 5 | 0 |

- Solution
a) $596 \div 8=74$ remainder 4
$74 \div 8=9$ remainder 2
b) $1000 \div 8=125$ remainder 0

$$
\begin{align*}
& 125 \div 8=15 \text { remainder } 5  \tag{1124}\\
& 15 \div 8=1 \text { remainder } 7 \\
& 1 \div 8=0 \text { remainder } 1
\end{align*}
$$

$$
1750
$$

$9 \div 8=1$ remainder 1
$1 \div 8=0$ remainder 1

## HEXADECIMAL NUMBERS

- The 16 allowable digits are
0,1,2,3,4,5,6,7,8,9,A, B,C,D,E and F
$\square$ the weights are powers of 16 .

| Decimal | Binary | Hexadecimal |
| :--- | :--- | :---: |
| 0 | 00000000 | 00 |
| 1 | 00000001 | 01 |
| 2 | 00000010 | 02 |
| 3 | 00000011 | 03 |
| 4 | 00000100 | 04 |
| 5 | 00000101 | 05 |
| 6 | 00000110 | 06 |
| 7 | 00000111 | 07 |
| 8 | 00001000 | 08 |
| 9 | 00001001 | 09 |
| 10 | 00001010 | 0 A |
| 11 | 00001011 | 0 B |
| 12 | 00001100 | 0 C |
| 13 | 00001101 | 0 D |
| 14 | 00001110 | 0 E |
| 15 | 00001111 | 0 F |
| 16 | 00010000 | 10 |
| 17 | 00010001 | 11 |
| 18 | 00010010 | 12 |
| 19 | 00010011 | 13 |
| 20 | 00010100 | 14 |

## Hexadecimal Conversion: binary to

 hexadecimal- grouping the binary positions in groups of four
- Convert the following binary numbers into hexadecimal: a) 10101111 b) 01101100
$\square$ Solution:
- $10110111=10110111=(B 7)_{16}$
- $01101100=01101100=(6 \mathrm{C})_{16}$


## Hexadecimal Conversion: hex to

## binary

a replace each hexadecimal number with four equivalent binary numbers even if the number can be represented by less than four bits
$\square$ Convert the following hexadecimal number into binary: a) A2E b)60F

- Solution:
- a) $(\text { A2E })_{16}=101000101110$
$=(101000101110)_{2}$
- b) $(60 \mathrm{~F})_{16} \quad=011000001111$

$$
=(011000001111)_{2}
$$

## Hexadecimal Conversion: hex to

 decimal- To convert from hexadecimal to decimal, (multiply by weighting factors).
- Convert (7AD)16 to decimal.
$\square$ Solution:
- (7AD) ${ }_{16}$

$$
\begin{aligned}
& =7 \times 16^{2}+10 \times 16^{1}+13 \times 16^{0} \\
& =(1965)_{10}
\end{aligned}
$$

## Hexadecimal Conversion: decimal to

## hex

- To convert from decimal to hexadecimal, the successivedivision procedure or the sum of weights procedure can be used.
- Convert the following decimal numbers to hexadecimal: a) $(596)_{10}$ b) $(100)_{10}$
- Solution:
- $596 \div 16=37$ remainder
- $37 \div 16=2$ remainder 5

- $2 \div 16=0$ remainder 2
- $1000 \div 16=62$ remainder 8
- $62 \div 16=3$ remainder 14

3E8

- $3 \div 16=0$ remainder 3


## Exercise

| Decimal | Binary | Octal | Hexa- <br> decimal |
| :---: | :---: | :---: | :---: |
| 33 |  |  |  |
|  | 1110101 |  |  |
|  |  | 703 |  |
|  |  |  | 1 AF |

## Exercise



## Binary Addition

Two 1-bit values


## Binary Addition

## Two $n$-bit values

- Add individual bits
- Propagate carries
- E.g.,

$$
\begin{array}{r}
111 \\
+\quad 10101 \\
\hline 101110
\end{array} \begin{array}{r}
21 \\
\hline \quad 25 \\
\hline 46
\end{array}
$$

## Binary Arithmetic

- Binary Addition

$$
\begin{array}{llllllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & & & \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1
\end{array}
$$

$$
\begin{array}{cccccccc} 
& \mathbf{1} & & & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
& 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
& \\
& 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\mathbf{1} & 1 \\
\cline { 2 - 7 } & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array}
$$

口 $11101101+01000011=100110000$ This example shows that the result could not fit in 8bits $(237+67=304)$ and the maximum capacity of 8 -bits is 255 . That is what we call overflow.

## Binary Subtraction

- The four cases for subtracting binary digits (A B) are as follows

| A | B | D | B |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |

$\square D$ is the difference and $B$ is the borrow

## Example

- Subtract the following binary numbers and put the result in 8-bits. Verify your answer by converting into decimal:
口 a) 10111111-01111100
- $10111111-01111100=01000011 \quad(191-124=67)$

口 b) 11101101-01000011

- 11101101-01000011 = 10101010
$(237-67=170)$

| $\mathbf{0}$ | $\mathbf{1 0}$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |


|  |  |  |  |  | $\mathbf{0}$ | $\mathbf{1 0}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | + | $\theta$ | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

## Multiplication

## Decimal (just for fun)

$$
\begin{array}{r}
35 \\
\times \quad 105 \\
\hline 175 \\
000 \\
35 \\
\hline 3675
\end{array}
$$

## Multiplication

Binary, two 1-bit values

| $A$ | $B$ | $A \times B$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## Multiplication

Binary, two $n$-bit values

- As with decimal values
- E.g.,

| 1110 |
| :---: |
| $\times 1011$ |
| 1110 |
| 1110 |
| 0000 |
| 1110 |
| 10011010 |

## Binary Multiplication

ㅁ a) $11100 \times 101=10001100$

- $(16+8+4) \times(4+1)=(128+8+4)$
- $28 \times 5=140$

口 b) $11011 \times 1101=101011111$

- $(16+8+2+1) \times(8+4+1)=(256+64+16+8+4+2+1)$
- $27 \times 13=351$

|  |  | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 0 |


|  |  |  |  |  | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1 | 1 | 0 | 1 | 1 |  |
|  |  |  | 0 | 0 | 0 | 0 | 0 |  |
|  | 1 | 1 | 0 | 1 | 1 |  |  |  |
|  |  | 1 |  |  |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |  |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |

## Binary Division

$$
\begin{aligned}
& \text { ㅁ } 11001 \div 101=101 \\
& \text { ㅁ }(16+8+1) \div(4+1)= \\
& \text { (4+1) } \\
& \text { - } 25 \div 5=5 \\
& \begin{array}{lll|lllll}
1 & 0 & 1 & & & & & \\
1 & 1 & 0 & 0 & 1 \\
1 & & & & & & & 1 \\
1 & 0 & 1 & & \\
\hline
\end{array}
\end{aligned}
$$

## 1's and 2's COMPLEMENTS

- 1's and 2's complement allow the representation of negative numbers in binary.
- The 1 's complement of a binary number is found by simply changing all 1s to Os and all Os to 1 s .
- Examples

ㅁ The 1 's complement of $10001111=01110000$.

- The 1 's complement of $01101100=10010011$.

ㅁ The 1's complement of $00110011=11001100$.

## 2's complement

- The 2's complement of a binary number is found by adding 1 to the LSB of the 1 's complement.
- Another way of obtaining the 2's complement of a binary number is to start with the LSB (the rightmost bit) and leave the bits unchanged until you find the first 1. Leave the first 1 unchanged and complement the rest of the bits (change 0 to 1 and 1 to 0 ).


## 2's complement

- Example
- The 2's complement of 10001111

$$
=01110000+1=01110001
$$

- The 2's complement of 01101100

$$
=10010011+1=10010100
$$

- The 2's complement of 00110011

$$
=11001100+1=11001101
$$

## REPRESENTATION OF SIGNED

## NUMBERS

- There are three basic ways to represent signed numbers:
- sign-magnitude
- 1's complement
- 2's complement.


## Sign-Magnitude

- The number consists of two parts:
- the MSB (most significant bit) represents the sign
- the other bits represent the magnitude of the number.
$\square$ If the sign bit is 1 the number is negative and if it is 0 the number is positive.


## Examples: decimal to sign-magnitude

$\square-30=10011110$ (The leftmost 1 indicates that the number is negative. The remaining 7-bits carry the magnitude of 30)

- $30=00011110$ (The only difference between
-30 and +30 is the sign bit because the magnitude bits are similar in both numbers.)
口-121 = 11111001
口 $99=01100011$


## Examples: sign-magnitude to decimal

ㅁ $10111001=-57$ (The leftmost 1 indicates that the number is negative. The remaining 7-bits carry the magnitude of 57)

- $11111111=-127$ (The minimum number that can be represented in an 8-bit register using sign-magnitude representation)
口 $01111111=+127$ (The maximum number that can be represented in an 8 -bit register using sign-magnitude representation)


## Range of numbers in SignMagnitude Representation

- for an n-bit number, the range of values that could be represented using signmagnitude notation is from

$$
-\left(2^{n-1}-1\right) \text { to }+\left(2^{n-1}-1\right)
$$

- For example if $\mathrm{n}=8$ the range is from -127 to 127


## Representation of negative numbers in 1's Complement

- Negative numbers are represented in 1's complement format
口 positive numbers are represented as the positive sign-magnitude numbers


## Examples：decimal to 1＇s complement

ㅁ $30=00011110$
口 $-30=11100001$
－the number equals the 1 ＇s complement of 30
口 $121=01111001$
口－121＝ 10000110
$\square 99=01100011$

## Examples: 1's complement to decimal

ㅁ $10111001=-01000110=-70$

- The leftmost 1 indicates that the number is negative. Take the 1's complement of the number to get the magnitude of 70
- $11111111=-00000000=-0$
- there are two representations of zero
- $01111111=+127$
- The maximum +ve number

ㅁ $10000000=-01111111=-127$

- The maximum -ve number


## Range of numbers in 1's complement Representation

$\square-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$.

- exactly the same as the range of numbers in sign-magnitude

Representation of negative numbers in 2's Complement
$\square$ Negative numbers are represented in 2's complement format

- Positive numbers are represented exactly the same way as in sign-magnitude and in 1's complement


## Examples: decimal to 2's complement

$\square 30=00011110$
$\square-30=11100010$

- the number equals the 2's complement of 30
- $121=01111001$
$\square-121=10000111$
$\square 99=01100011$


## Examples: 2's complement to decimal

$\square 10111001=-01000111=-71$

- The leftmost 1 indicates that the number is negative.
- Take the 2's complement of the number to get the magnitude of 71
ㅁ $11111111=-00000001=-1$
- No two representations of zero
- $01111111=+127$
- The maximum +ve number
- $10000000=-10000000=-128$
- The minimum -ve number

Range of numbers in 2's complement Representation
$\square-\left(2^{n-1}\right)$ to $+\left(2^{n-1}-1\right)$
$\square$ if $n=8$ the range is from -128 to 127

## 2's Complement Evaluation

$\square$ Positive and negative numbers in the 2's complement system are evaluated by summing the weights in all bit positions where there are 1 s and ignoring those positions where there are zeros.
$\square$ The weight of the sign bit in a negative number is given a negative value

## EXAMPLE

ㅁ $01010110=64+16+4+2=+86$
ㅁ

| $-2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

ㅁ $10101010=-128+32+8+2=-86$

| $-2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |

## ARITHMETIC OPERATIONS WITH SIGNED NUMBERS (ADDITION)

- Both numbers positive:
- 000001117
$\begin{array}{r}\square+00000100+4 \\ \hline 00001011 \quad 11\end{array}$
$\square$ Positive number with magnitude larger than negative number:

| 00001111 | 15 |  |
| ---: | ---: | ---: |
| +11111010 | +-6 |  |
| Discard carry 1 | 00001001 | 9 |

## ARITHMETIC OPERATIONS WITH SIGNED NUMBERS (ADDITION)

$\square$ Negative number with magnitude larger than positive number:

| 00010000 | 16 |
| ---: | ---: |
| +11101000 | +-24 |

ㅁ $11111000-8$

- Both numbers negative:

| 11111011 | -5 |
| ---: | ---: | ---: |
| +11110111 | +-9 |
| Discard carry—> 111110010 | -14 |

## Overflow Condition

- When two numbers are added and the number of bits required to represent the sum exceeds the number of bits in the two numbers, an overflow results
$\square$ incorrect sign bit
a only when both numbers are positive or both numbers are negative


## Example

$$
\begin{array}{r}
01111101 \quad 125 \\
+\quad 00111010+58 \\
\hline 10110111 \quad 183 \\
\square \text { Incorrect sign } \\
\square \text { Incorrect magnitude } \\
\square \text { What if we have an extra bit? }
\end{array}
$$

## ARITHMETIC OPERATIONS WITH SIGNED NUMBERS (Subtraction)

- the subtraction operation changes the sign of the subtrahend and adds it to the minuend.
- Example: 10001000-11100010
- Try in your notebook.


## solution

ㅁ 10001000-11100010
ㅁ-120-(-30) $=-120+30=-90$
10001000 Minuend (-120)
$+00011110 \quad 2$ 's complement of subtrahend $(+30)$ 10100110 Difference (-90)

