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CHAPTER 1 

 

NUMBER SYSTEMS AND 
CODES 
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Common Number System 

 



Conversion among Bases 



Quick example  



Decimal to Decimal (just for fun) 



BINARY NUMBERS 

 In the decimal numbering system, each 
position can represent 10 different digits 
from 0 to 9. each position has a weighting 
factor of powers of 10.  

 5621 = 1x100 + 2x101 + 6x102 + 5x103 

 In binary numbers, we can only use the 
digits 0 and 1 and the weights are powers 
of 2.  
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Decimal to Binary  



Binary to Decimal Conversion  

 To convert a binary number into decimal, 
we multiply each bit (binary digit) by the 
weight of its position and sum up the 
results.  

 (11011011)2 = 1x 20+ 1x 21+ 1x 23+ 1x 24+ 1x 26+ 1x27 

                                = 1 + 2 + 8 +16 + 64 + 128 = 219 



Decimal to Binary Conversion 

  There are two ways to make this 
conversion: 

  the repeated division-by-2-method (which you 
have studied before)  

 the sum of weights method  



Decimal to Binary 



Sum of weights method  

 To find a binary number that is equivalent 
to a decimal number, we can determine 
the set of binary weights whose sum is 
equal to the decimal number.  

 



Sum of weights method (contd.) 

 Example: 

 Convert the following decimal numbers to 
binary form: 13, 100, 65, and 189. Put 
your answer as eight bit numbers. 

 Answer:  

  128 64 32 16 8 4 2 1 

13   =  0 0 0 0 1 1 0 1 

100 =  0 1 1 0 0 1 0 0 

65   =  0 1 0 0 0 0 0 1 

189 =  1 0 1 1 1 1 0 1 

 



Binary To Decimal 



Decimal to Binary 



Range of binary numbers 

 Total combinations = 2n  different 
numbers in the range  0 to (2n – 1)  

 For  example a 4-bit number can hold up 
to 24=16 different values in the range 0 to 
15 (0 to 1111).  

 An 8-bit number can hold up to 28=256 
different values in the range 0 to 255 (0 
to 11111111).  



Example  

 What is the range of values (in decimal) that 
can be represented by a binary number of 
the following number of bits:  10, 20  and 
24.  

 Solution  
 N=10  range =  0  to 210 – 1 = 0 to 1023  

   i.e.  1024 (1K)numbers  

 N=20  range =0  to 220 – 1 =0 to 1048575 
   i.e.  1048576 (1M)numbers 

 N=24  range =0  to 224 – 1 =0 to 16777215 
   i.e.  16777216 (16M)numbers 



OCTAL NUMBERS  

 The eight allowable digits are 0,1,2,3,4,5,6 and 7 and the 
weights are powers of 8.  

 Decimal  Binary  Octal 
 0   0 0 0  0 
 1   0 0 1  1 
 2   0 1 0  2 
 3   0 1 1   3 
 4   1 0 0  4 
 5   1 0 1  5 
 6   1 1 0  6 
 7   1 1 1  7 
 8                     1 0 0 0  10 
 9          1 0 0 1  1 1 
 10          1 0 1 0  1 2 
 11          1 0 1 1  1 3 



Octal Conversions: binary to octal  

 group the binary positions in groups of 
three  

 Convert the following binary numbers into 
octal: a) 10110111   b) 01101100  

 Solution  

 10110111 = 010 110 111 =  267  

 01101100 = 001 101 100 = 154  



Octal Conversions: octal to binary 

 replace each octal number with three equivalent 
binary numbers even if the number can be 
represented by less than three bits  

 Convert the following octal number into 
binary:  a) 327   b)601  

 Solution  

 a) 327 = 011 010 111 = 11010111  

 b) 601 = 110 000 001 = 110000001 



Octal Conversions: octal to decimal 

 To convert from octal to decimal, (multiply 

by weighting factors).  

 Convert (713)8 to decimal. 

 Solution  

 713 = 7 x 82 + 1 x 81 + 3 x 80 = 459  



Octal Conversions: decimal to octal 

 To convert from decimal to octal, the 
successive-division procedure or the sum 
of weights procedure can be used  



Octal Conversions (contd.) 

 Convert the following 

decimal numbers to 

octal:  a) (596)10           

  b)  (100)10  

 Solution  
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 512 64 8 1 

596   =  1 1 2 4 

1000 =  1 7 5 0 

 

a) 596 ÷ 8 = 74 remainder 4 

 74 ÷ 8 = 9 remainder 2          1124 

 9 ÷ 8 = 1 remainder 1 

 1 ÷ 8 = 0 remainder 1 

b) 1000 ÷ 8 = 125 remainder 0 

 125 ÷ 8 = 15 remainder 5       1750 

 15 ÷ 8 = 1 remainder 7 

 1 ÷ 8 = 0 remainder 1 



HEXADECIMAL NUMBERS  

 The 16 allowable 
digits are 
0,1,2,3,4,5,6,7,8,9,A,
B,C,D,E and F  

 the weights are 
powers of 16.  

 

Decimal Binary Hexadecimal 

0 0000 0000 0 0 

1 0000 0001 0 1 

2 0000 0010 0 2 

3 0000 0011 0 3 

4 0000 0100 0 4 

5 0000 0101 0 5 

6 0000 0110 0 6 

7 0000 0111 0 7 

8 0000 1000 0 8 

9 0000 1001 0 9 

10 0000 1010 0 A 

11 0000 1011 0 B 

12 0000 1100 0 C 

13 0000 1101 0 D 

14 0000 1110 0 E 

15 0000 1111 0 F 

16 0001 0000 1 0 

17 0001 0001 1 1 

18 0001 0010 1 2 

19 0001 0011 1 3 

20 0001 0100 1 4 

 



Hexadecimal Conversion: binary to 

hexadecimal  

 grouping the binary positions in groups of 
four 

 Convert the following binary numbers into 
hexadecimal: a) 10101111   b) 01101100 

 Solution: 

 10110111 = 1011 0111 =  (B 7)16 

 01101100 = 0110 1100 = (6 C)16 



Hexadecimal Conversion: hex to 

binary  

 replace each hexadecimal number with four 
equivalent binary numbers even if the number 
can be represented by less than four bits  

 Convert the following hexadecimal number into 
binary:  a) A2E   b)60F 

 Solution: 

 a) (A2E)16  = 1010 0010 1110  

    = (101000101110)2  

 b) (60F)16  = 0110 0000 1111    

  = (011000001111)2  



Hexadecimal Conversion: hex to 

decimal 

 To convert from hexadecimal to decimal, 
(multiply by weighting factors).  

 Convert (7AD)16 to decimal. 

 Solution: 

 (7AD)16  = 7 x 162 + 10 x 161 + 13 x 160 

   = (1965)10 



Hexadecimal Conversion: decimal to 

hex 

 To convert from decimal to hexadecimal, the successive-
division procedure or the sum of weights procedure can be 
used. 

 Convert the following decimal numbers to hexadecimal: a) 

(596)10  b)  (100)10 

 Solution: 
   596 ÷ 16   = 37 remainder     4 

  37   ÷ 16   = 2  remainder      5      254 

  2     ÷ 16   = 0  remainder      2 

 

  1000 ÷  16  = 62  remainder 8 

  62   ÷  16  = 3    remainder 14       3E8 

  3     ÷  16  = 0    remainder 3 



Exercise 



Exercise  



Binary Addition 



Binary Addition 



Binary Arithmetic  

 Binary Addition  

 

 

 

 

 11101101 + 01000011 = 100110000   This 
example shows that the result could not fit in 8-
bits ( 237 + 67 = 304) and the maximum 
capacity of 8-bits is 255. That is what we call 
overflow.  

 

 

1 1 1 1 1        1   1 1 1 1  

0 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 

0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 

1 0 1 1 1 0 1 1    1 0 0 1 1 0 0 0 0 

 



Binary Subtraction 

 The four cases for subtracting binary digits (A - 
B) are as follows  

 

 

 

 

 

 

 D is the difference and B is the borrow  

A B D B 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 



Example 

 Subtract the following binary numbers and put 
the result in 8-bits. Verify your answer by 
converting into decimal:  

 a) 10111111 - 01111100  

 10111111 - 01111100 = 01000011    (191 - 124 = 67)  

 b) 11101101 – 01000011 

 11101101 - 01000011 = 10101010    (237 – 67 = 170)  

0 10                0 10  

1 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 

0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 

0 1 0 0 0 0 1 1     1 0 1 0 1 0 1 0 

 



Multiplication 



Multiplication 



Multiplication 



Binary Multiplication   
 a) 11100 x 101  = 10001100 

 (16+8+4) x (4+1) = (128+8+4)       

 28 x  5 = 140 

 b) 11011 x 1101  = 101011111 

 (16+8+2+1) x (8+4+1) = (256+64+16+8+4+2+1) 

 27 x  13 = 351      1 1 1 0 0      1 1 0 1 1  

      1 0 1       1 1 0 1  

    1 1 1 0 0      1 1 0 1 1  

   0 0 0 0 0      0 0 0 0 0   

  1 1 1 0 0      1 1 0 1 1    

 1 0 0 0 1 1 0 0   1 1 0 1 1     

          1 0 1 0 1 1 1 1 1  

 



Binary Division  

 11001 ÷ 101  = 101 

 (16+8+1) ÷ (4+1) = 

(4+1) 

 25 ÷  5 = 5  

 

     1 0 1   

1 0 1 1 1 0 0 1   

   1 0 1     

     1 0 1   

     1 0 1   

     0 0 0   

 



1’s and 2’s COMPLEMENTS 

 1’s and 2’s complement allow the representation 
of negative numbers in binary.  

 The 1's complement of a binary number is 
found by simply changing all 1s to 0s and all 
0s to 1s.  

 Examples  

 The 1’s complement of 10001111 = 01110000 . 

 The 1’s complement of 01101100 = 10010011 . 

 The 1’s complement of 00110011 = 11001100 . 



2's complement 

 The 2's complement of a binary number is 
found by adding 1 to the LSB of the 1 's 
complement. 

 Another way of obtaining the 2’s 
complement of a binary number is to start 
with the LSB (the rightmost bit) and leave 
the bits unchanged until you find the first 
1. Leave the first 1 unchanged and 
complement the rest of the bits (change 0 
to 1 and 1 to 0).  



2's complement  

 Example  

 The 2’s complement of 10001111   
   = 01110000 +1 = 01110001 

 The 2’s complement of 01101100   
   = 10010011 + 1 =10010100 

 The 2’s complement of 00110011   
   = 11001100 + 1 = 11001101 



REPRESENTATION OF SIGNED 

NUMBERS  

 There are three basic ways to represent 
signed numbers: 

  sign-magnitude 

 1’s complement  

 2’s complement.  

 



Sign-Magnitude  

 The number consists of two parts:  

 the MSB (most significant bit) represents the 
sign  

 the other bits represent the magnitude of the 
number.  

 If the sign bit is 1 the number is negative 
and if it is 0 the number is positive.  



Examples: decimal to sign-magnitude 

 -30 = 1 0011110  (The leftmost 1 indicates 

 that the number is negative. The remaining 
 7-bits carry the magnitude of 30) 

 30 = 0 0011110  (The only difference between 

 –30 and +30 is the sign bit because the 
 magnitude bits are similar in both numbers.) 

 -121 = 1 1111001  

 99 = 0 1100011 



Examples: sign-magnitude to decimal 

 10111001 = -57  (The leftmost 1 indicates 

 that the number is negative. The remaining 
 7-bits carry the magnitude of 57) 

 11111111 = -127  (The minimum number 

 that can be represented in an 8-bit register 
 using sign-magnitude representation) 

 01111111 = +127 (The maximum number 

 that can be represented in an 8-bit register 
 using sign-magnitude representation) 



Range of numbers in Sign-

Magnitude Representation  

 for an n-bit number, the range of values 
that could be represented using sign-
magnitude notation is from  

 –(2n-1-1) to +(2n-1-1).  

 For example if n=8 the range is from –127 
to 127  



Representation of negative numbers 

in 1’s Complement 

 Negative numbers are represented in 1’s 
complement format  

 positive numbers are represented as the 
positive sign-magnitude numbers 

 



Examples: decimal to 1’s complement 

 30 = 00011110 

 -30 = 11100001   
 the number equals the 1’s complement of 30 

 121 = 01111001   

 -121 = 10000110 

 99 = 01100011 

 



Examples: 1’s complement to decimal 

 10111001 = -01000110 = -70   

 The leftmost 1 indicates that the number is 
negative. Take the 1’s complement of the 
number to get the magnitude of 70 

 11111111 = -00000000 = -0  

 there are two representations of zero  

 01111111 = +127  

 The maximum +ve number  

 10000000 = -01111111 = -127 

 The maximum –ve number   

 

 



Range of numbers in 1’s complement 

Representation 

 –(2n-1-1) to +(2n-1-1).  

 exactly the same as the range of numbers in 
sign-magnitude 



Representation of negative numbers in 

2’s Complement 

 Negative numbers are represented in 2’s 
complement format  

 Positive numbers are represented exactly 
the same way as in sign-magnitude and in 
1’s complement 



Examples: decimal to 2’s complement 

 

 30 = 00011110 

 -30 = 11100010   

 the number equals the 2’s complement of 30 

 121 = 01111001   

 -121 = 10000111 

 99 = 01100011 



Examples: 2’s complement to decimal 

 10111001 = -01000111 = -71   

 The leftmost 1 indicates that the number is 
negative. 

  Take the 2’s complement of the number to get 
the magnitude of 71 

 11111111 = -00000001 = -1   

 No two representations of zero 

 01111111 = +127  

 The maximum +ve number 

 10000000 = -10000000 = -128  

 The minimum –ve number 



Range of numbers in 2’s complement 

Representation 

 –(2n-1) to +(2n-1-1) 

 if n=8 the range is from –128 to 127 



2's Complement Evaluation 

 Positive and negative numbers in the 2's 
complement system are evaluated by 
summing the weights in all bit positions 
where there are 1s and ignoring those 
positions where there are zeros.  

 The weight of the sign bit in a negative 
number is given a negative value 



EXAMPLE 

 01010110 = 64 + 16 + 4 + 2 = +86 

   

 

 

 

 10101010 =  -128 + 32 + 8 + 2 = -86 

 

-27 26 25 24 23 22 21 2° 

0 1 0 1 0 1 1 0 

 

-27 26 25 24 23 22 21 2° 

1 0 1 0 1 0 1 0 

 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (ADDITION) 

 Both numbers positive:     
    00000111      7 

 + 00000100    + 4 

    00001011     11 

 Positive number with magnitude 
larger than negative number: 

         00001111      15 

       + 11111010    + -6 

 Discard carry    1       00001001        9 

 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (ADDITION) 

 Negative number with magnitude 
larger than positive number: 

      00010000       16 

                + 11101000    + -24 

                    

                    11111000       -8 

 Both numbers negative:                   
       11111011      —5 

                          + 11110111    + -9 

 Discard carry—> 1  11110010     -14 

 



Overflow Condition 

 When two numbers are added and the 
number of bits required to represent the 
sum exceeds the number of bits in the two 
numbers, an overflow results  

 incorrect sign bit 

 only when both numbers are positive or 
both numbers are negative 



Example 

     01111101      125 

+   00111010    + 58 

     10110111      183 

 Incorrect sign 

 Incorrect magnitude 

 What if we have an extra bit? 



ARITHMETIC OPERATIONS WITH 

SIGNED NUMBERS (Subtraction) 

 the subtraction operation changes the sign 
of the subtrahend and adds it to the 
minuend. 

 Example: 10001000 – 11100010 

 

 Try in your notebook. 

 



solution 

 10001000 – 11100010 

 -120 - (-30) = -120 + 30 = -90 

 

   10001000      Minuend (-120) 

+ 00011110      2's complement of subtrahend (+30) 

   10100110      Difference (-90) 


